Deriving the ODE and solution with an arbitrary factor ordering

Table of Contents

Previous Page

Nakayama's Derivation

This page is subject to construction and rewriting. Content is still valid.

Derivation of the ODE

Starting from

Taking the energy $E=0$, promoting $\Pi_l \to -i \hbar \frac{d}{d l}$, taking an arbitrary factor ordering, and multiplying by a $-1$ we have

(1)
\begin{align} \hbar^{2} l^{i} \frac{d}{d l} l^{j} \frac{d}{d l} i^{k} \Psi - [\left( m+ \frac{1}{2} \right)^2 l^{-1} + \lambda l] \Psi = 0 \end{align}

where $\Psi \equiv \Psi \left( l \right)$. The momentum term is also self-adjoint in $L^2 \left( \mathbb{R}^+, l^{k-i} dl \right)$ as it will be obvious later. Defining $V \equiv - [\left( m+ \frac{1}{2} \right)^2 l^{-1} + \lambda l]$ with $i+j+k=1$, $c \equiv i-k$, $i-c-k=0$, and $j=1-c-2 k$ this is:

(2)
\begin{align} 0 & = \hbar^{2} l^{i} \frac{d}{d l} l^{j} \frac{d}{d l} l^{k} \Psi + V \Psi \\ & = \hbar^{2} l^{i} \frac{d}{d l} l^{j} \left( k l^{k-1} \Psi + l^{k} \Psi^{\prime} \right) + V \Psi \\ & = \hbar^{2} l^{i} \frac{d}{d l} \left( k l^{j+k-1} \Psi + l^{j+k} \Psi^{\prime} \right) + V \Psi \\ & = \hbar^{2} l^{i} \frac{d}{d l} \left( k l^{1-c-k-1} \Psi + l^{1-c-k} \Psi^{\prime} \right) + V \Psi\\ & = \hbar^{2} l^{i} \frac{d}{d l} \left( k l^{-c-k} \Psi + l^{1-c-k} \Psi^{\prime} \right) + V \Psi \\ & = \hbar^{2} \left( k \left( -c-k \right) l^{i-c-k-1} \Psi + \left( k+1-c-k \right) l^{i-c-k} \Psi^{\prime} +l^{1+i-c-k} \Psi^{\prime \prime} \right) + V \Psi \\ & = \hbar^{2} \left( k \left( -c-k \right) l^{-1} \Psi + \left( 1-c \right) \Psi^{\prime} + l \Psi^{\prime \prime} \right) + V \Psi \end{align}

But we want 2 to be self-adjoint in $L^2 \left( \mathbb{R}^+, l^{-1/2} dl \right)$ of the form $l^{m} \left( \hbar^{2} l^{1/2} \frac{d}{d l} l^{1/2} \frac{d}{d l} l^{-m} \Psi +V_{QP} l^{-m} \Psi \right)$ where the conjugated operators $l^{m}$ and $l^{-m}$ go from the metric that is imposed upon 2 to $L^2 \left( \mathbb{R}^+, l^{-1/2} dl \right)$ . So, if we ignore the potential V for now, we assume the operator is of this form:

(3)
\begin{align} & \ \ \ \ \hbar^{2} l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) } \left( l^{1/2} \frac{d}{d l} l^{1/2} \frac{d}{d l} l^{ \left( \frac{1}{4} - \frac{c}{2} \right) } \Psi \right) \\ & = \hbar^{2} l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) + 1/2 } \left( \frac{d}{d l} l^{1/2} \frac{d}{d l} l^{ \left( \frac{1}{4} - \frac{c}{2} \right) } \Psi \right) \\ & = \hbar^{2} l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) + 1/2 } \left( \frac{d}{d l} l^{1/2} \left( \left( \frac{1}{4} - \frac{c}{2} \right) l^{ \left( \frac{1}{4} - \frac{c}{2} \right) -1 } \Psi + l^{ \left( \frac{1}{4} - \frac{c}{2} \right) } \Psi^{\prime} \right) \right) \\ & = \hbar^{2} l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) + 1/2 } \left( \frac{d}{d l} \left( \left( \frac{1}{4} - \frac{c}{2} \right) l^{ \left( \frac{1}{4} - \frac{c}{2} \right) -1 + 1/2 } \Psi + l^{ \left( \frac{1}{4} - \frac{c}{2} \right) +1/2 } \Psi^{\prime} \right) \right) \\ & = \hbar^{2} l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) + 1/2 } \left( \left( \frac{1}{4} - \frac{c}{2} \right) \left( \left( \frac{1}{4} - \frac{c}{2} \right) -1 + 1/2 \right) l^{ \left( \frac{1}{4} - \frac{c}{2} \right) -2 + 1/2 } \Psi + \left( \frac{1}{4} - \frac{c}{2} \right) l^{ \left( \frac{1}{4} - \frac{c}{2} \right) -1 + 1/2 } \Psi^{ \prime } \\ & \ \ \ \ \ \ \ \ + \left( \frac{1}{4} - \frac{c}{2} + 1/2 \right) l^{ \left( \frac{1}{4} - \frac{c}{2} \right) -1 + 1/2 } \Psi^{\prime} + l^{ \left( \frac{1}{4} - \frac{c}{2} \right) +1/2 } \Psi^{\prime \prime} \right) \\ & = \hbar^{2} \left( \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \Psi + \left( 1-c \right) \Psi^{\prime} + l \Psi^{\prime \prime} \right) \end{align}

Knowing that we want this form and seeing the first two derivatives' coefficients are the same, we add and subtract $\hbar^{2} \left[ \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \right]$ onto the result of Eq.(2). We obtain:

(4)
\begin{align} \begin{align} 0 & = \hbar^{2} \left( k \left( -c-k \right) l^{-1} \Psi + \left( 1-c \right) \Psi^{\prime} + l \Psi^{\prime \prime} \right) + V \Psi + \hbar^{2} \left[ \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \right] \Psi - \hbar^{2} \left[ \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \right] \Psi \\ & = \hbar^{2} \left( \left[ \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \right] \Psi + \left( 1-c \right) \Psi^{\prime} + l \Psi^{\prime \prime} \right) + V \Psi + \hbar^{2} k \left( -c-k \right) l^{-1} \Psi - \hbar^{2} \left[ \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \right] \Psi \\ & = \hbar^{2} l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) } \left( l^{1/2} \frac{d}{d l} l^{1/2} \frac{d}{d l} l^{ \left( \frac{1}{4} - \frac{c}{2} \right) } \Psi \right) + V \Psi + \hbar^{2} k \left( -c-k \right) l^{-1} \Psi - \hbar^{2} \left[ \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \right] \Psi \end{align}

We pull out $l^{ \left( \frac{1}{4} - \frac{c}{2} \right) }$ to obtain the differential operator on $\Psi$

(5)
\begin{align} 0 = l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) } \left[ \hbar^{2} l^{1/2} \frac{d}{d l} l^{1/2} \frac{d}{d l} + V \Psi + \hbar^{2} k \left( -c-k \right) l^{-1} - \hbar^{2} \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} \right] l^{ \left( \frac{1}{4} - \frac{c}{2} \right) } \Psi. \end{align} \end{align}

To be clear about what is going on here. If we were to multiply back in the $l^{ \left( \frac{1}{4} - \frac{c}{2} \right) }$ on the right, it would be operated on by the differential operators in the first term. We could in fact pull out the $\Psi$ out of the equation under the same assumption. Also, since $l^{ \left( - \frac{1}{4} + \frac{c}{2} \right) }$ and $l^{ \left( \frac{1}{4} - \frac{c}{2} \right) }$ are conjugations by a multiplication operator that goes between $L^{2} \left( \mathbb{R}^{+}, l^{k-i} dl \right)$ and $L^{2} \left( \mathbb{R}^{+}, l^{-1/2} dl \right)$, they can be dropped with the understanding that we are working in their metric. This finally yields our differential equation

(6)
\begin{align} \hbar^{2} l^{1/2} \frac{d}{d l} \left( l^{1/2} \frac{d}{d l} \Psi \right) - \left( \left( m+ \frac{1}{2} \right)^2 l^{-1} + \lambda l - \hbar^{2} \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) l^{-1} + \hbar^{2} k \left( -c-k \right) l^{-1} \right) \Psi = 0. \end{align}

Now to solve it.

Solving and a solution

First, we take and group the terms:

(7)
\begin{align} \hbar^{2} l^{1/2} \frac{d}{d l} \left( l^{1/2} \frac{d}{d l} \Psi \right) - \left( \left[ \left( m+ \frac{1}{2} \right)^2 - \hbar^{2} \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) + \hbar^{2} k \left( -c-k \right) \right] l^{-1} + \lambda l \right) \Psi = 0. \end{align}

Next, define $a = \left[ \left( m+ \frac{1}{2} \right)^2 - \hbar^{2} \left( \frac{1}{4} - \frac{c}{2} \right) \left( \frac{-1}{4} - \frac{c}{2} \right) + \hbar^{2} k \left( -c-k \right) \right]$ so this becomes

(8)
\begin{align} l \Psi^{\prime \prime} + \frac{1}{2} \Psi^{\prime} - \hbar^{-2} \left[ l^{-1} a + \lambda l \right] \Psi = 0. \end{align}

We now rescale $z = \alpha 2 \sqrt{\lambda} l$ and $\Phi (z) = e^{-\beta z} z^{-\gamma} \Psi (l)$ where we solve for $\alpha$, $\beta$, and $\gamma$ to yield a similar result to Nakayama's. With these substitutions, 8 becomes

(9)
\begin{align} z \Phi^{\prime \prime} + \Phi^{\prime} \left[ 2 \gamma + \frac{1}{2} +2 \beta z \right] + \Phi \left[ z^{-1} \left[ \gamma \left( \gamma -1 \right) + \frac{\gamma}{2} - \frac{a}{\hbar^{2}} \right] + z \left[ \beta^2 - \frac{1}{ \alpha^2 \hbar^2} \right] + 2 \gamma \beta + \frac{\beta}{2} \right] =0. \end{align}

To solve for $\beta$, we notice in Nakayama's solution and in the Associated Laguerre ODE, that in $\Phi^{\prime}$ the $z$ must be multiplied by a $-1$. So then setting $2 \beta = -1$ gets us $\beta = -\frac{1}{2}$. For $\alpha$, we set $\beta^2 - \frac{1}{ \alpha^2 \hbar^2} = \frac{1}{4} - \frac{1}{ \alpha^2 \hbar^2}=0$ to get us $\alpha = \frac{2}{\hbar}$. So our ODE is now

(10)
\begin{align} z \Phi^{\prime \prime} + \Phi^{\prime} \left[ 2 \gamma + \frac{1}{2} - z \right] + \Phi \left[ z^{-1} \left[ \gamma \left( \gamma -1 \right) + \frac{\gamma}{2} - \frac{a}{\hbar^{2}} \right] - \gamma - \frac{1}{4} \right] =0. \end{align}

Now solving for $\gamma$ we notice further that there is no $z^{-1}$ term, so setting that to 0 yields $\gamma \left( \gamma -1 \right) + \frac{\gamma}{2} - \frac{a}{\hbar^{2}}=0$ which when solving for $\gamma$ gets us $\gamma = \frac{1}{4} \pm \frac{1}{2} \sqrt{ \frac{1}{4} + 4 \frac{a}{\hbar^2}}$. This then gives us our final ODE

(11)
\begin{align} z \Phi^{\prime \prime} + \Phi^{\prime} \left[ \pm \sqrt{ \frac{1}{4} + 4 \frac{a}{\hbar^2}} + 1 - z \right] + \Phi \left[ \mp \frac{1}{2} \sqrt{ \frac{1}{4} + 4 \frac{a}{\hbar^2}} - \frac{1}{2} \right] =0. \end{align}

This is again similar to the Associated Laguerre ODE so in a manner similar to Nakayama's solution we get the solution

(12)
\begin{align} \Phi (z) = \sqrt{\frac{n!}{\left( n+k \right)!}} L_n^k (z). \end{align}

where $n = \left[ \mp \frac{1}{2} \sqrt{ \frac{1}{4} + 4 \frac{a}{\hbar^2}} - \frac{1}{2} \right]$ and $k = \pm \sqrt{ \frac{1}{4} + 4 \frac{a}{\hbar^2}}$. This gives us then the full solution of

(13)
\begin{align} \Phi (z) = \sqrt{\frac{\Gamma \left(n -1 \left) }{\Gamma \left( n+k - 1} \right)}} e^{-\frac{\sqrt{\lambda}}{\hbar} l} \left( \frac{2\sqrt{\lambda}}{\hbar} l \right)^{ \frac{1}{4} \pm \frac{1}{2} \sqrt{ \frac{1}{4} + 4 \frac{a}{\hbar^2}}} L_{n}^{k} (\frac{2 \sqrt{\lambda}}{\hbar} l) \end{align}

with $\Gamma (n)$ is the Gamma Function and $L_n^k (z)$ are the generalized Laguerre polynomials.

Previous Page

Nakayama's Derivation

Table of Contents